|Listed in category:
Have one to sell?
AlibrisBooks
(452197)
Registered as a business seller

Deep Learning by Ian Goodfellow: Used

US $48.70
ApproximatelyEUR 43.29
Condition:
Good
Last one2 sold
Hurry before it's gone. 1 person is watching this item.
Breathe easy. Returns accepted.
Postage:
Free Standard Shipping.
Located in: Sparks, Nevada, United States
Delivery:
Estimated between Wed, 14 May and Mon, 19 May to 43230
Delivery time is estimated using our proprietary method which is based on the buyer's proximity to the item location, the delivery service selected, the seller's delivery history and other factors. Delivery times may vary, especially during peak periods.
Returns:
30 days return. Buyer pays for return postage. If you use an eBay delivery label, it will be deducted from your refund amount.
Payments:
    Diners Club

Shop with confidence

eBay Money Back Guarantee
Get the item you ordered or your money back. Learn moreeBay Money Back Guarantee - opens new window or tab
Seller assumes all responsibility for this listing.
eBay item number:403991436617
Last updated on 09 May, 2025 14:20:24 BSTView all revisionsView all revisions

Item specifics

Condition
Good: A book that has been read, but is in good condition. Minimal damage to the book cover eg. ...
Book Title
Deep Learning
Publication Date
2016-11-18
Pages
800
ISBN
0262035618

About this product

Product Identifiers

Publisher
MIT Press
ISBN-10
0262035618
ISBN-13
9780262035613
eBay Product ID (ePID)
228981524

Product Key Features

Number of Pages
800 Pages
Language
English
Publication Name
Deep Learning
Subject
Intelligence (Ai) & Semantics, Computer Science
Publication Year
2016
Type
Textbook
Author
Yoshua Bengio, Ian Goodfellow, Aaron Courville
Subject Area
Computers
Series
Adaptive Computation and Machine Learning Ser.
Format
Hardcover

Dimensions

Item Height
1.3 in
Item Weight
45.5 Oz
Item Length
9.3 in
Item Width
7.3 in

Additional Product Features

Intended Audience
Trade
LCCN
2016-022992
Dewey Edition
23
Reviews
[T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology., [T]he AI bible... the text should be mandatory reading by all data scientists and machine learning practitioners to get a proper foothold in this rapidly growing area of next-gen technology.-- Daniel D. Gutierrez , insideBIGDATA --
Illustrated
Yes
Dewey Decimal
006.3/1
Synopsis
An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." -Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors., An introduction to a broad range of topics in deep learning, covering mathematical and conceptual background, deep learning techniques used in industry, and research perspectives. "Written by three experts in the field, Deep Learning is the only comprehensive book on the subject." --Elon Musk , cochair of OpenAI; cofounder and CEO of Tesla and SpaceX Deep learning is a form of machine learning that enables computers to learn from experience and understand the world in terms of a hierarchy of concepts. Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning. The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models. Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
LC Classification Number
Q325.5.G66 2017

Item description from the seller

Seller business information

I certify that all my selling activities will comply with all EU laws and regulations.
About this seller

AlibrisBooks

98.5% positive Feedback1.9M items sold

Joined May 2008
Registered as a business seller
Alibris is the premier online marketplace for independent sellers of new & used books, as well as rare & collectible titles. We connect people who love books to thousands of independent sellers around ...
See more

Detailed seller ratings

Average for the last 12 months
Accurate description
4.9
Reasonable postage cost
5.0
Delivery time
4.9
Communication
4.9

Seller Feedback (503,205)

All ratings
Positive
Neutral
Negative
    • t***e (110)- Feedback left by buyer.
      Past month
      Verified purchase
      book was in great condition.
    See all Feedback